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ABSTRACT
Hotspots, a small set of tuples frequently read/written by a large
number of transactions, cause contention in a concurrency control
protocol. While a hotspot may comprise only a small fraction of a
transaction’s execution time, conventional strict two-phase locking
allows a transaction to release lock only after the transaction com-
pletes, which leaves significant parallelism unexploited. Ideally, a
concurrency control protocol serializes transactions only for the
duration of the hotspots, rather than the duration of transactions.

We observe that exploiting such parallelism requires violating
two-phase locking. In this paper, we propose Bamboo, a new con-
currency control protocol that can enable such parallelism by mod-
ifying the conventional two-phase locking, while maintaining the
same guarantees in correctness. We thoroughly analyzed the ef-
fect of cascading aborts involved in reading uncommitted data and
discussed optimizations that can be applied to further improve
the performance. Our evaluation on TPC-C shows a performance
improvement up to 4× compared to the best of pessimistic and
optimistic baseline protocols. On synthetic workloads that con-
tain a single hotspot, Bamboo achieves a speedup up to 19× over
baselines.
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Figure 1: Schedules of transactions with a hotspot A under
2PL, OCC, and an ideal case. ("Write" means read-modify-
write)

1 INTRODUCTION
Modern highly contentious transactional workloads suffer from
hotspots. A hotspot is one or a small number of database records
that are frequently accessed by a large number of concurrent trans-
actions. Conventional concurrency control protocols need to se-
rialize such transactions in order to support strong isolation like
serializability, even though the hotspot may comprise only a small
fraction of a transaction’s execution time. Figure 1 illustrates the
effect using a single hotspot of tuple A. For both pessimistic (Fig-
ure 1a) and optimistic (Figure 1b) concurrency control, transactions
wait or abort/restart at the granularity of entire transactions.

Ideally, we want a concurrency control protocol to serialize trans-
actions only for the duration of the hotspots (e.g., in Figure 1c, transac-
tion T2 can access the hotspot immediately after T1 finishes writing
it) but execute the rest of the transactions in parallel. If the hotspot
comprises only a small fraction of the transaction’s runtime, such
an ideal protocol can improve performance substantially.

Many production systems (MS Orleans [12], IBM IMS/VS [16],
Hekaton [9, 28], etc.) and research work [3, 10, 14, 17, 21, 24, 26,
32, 36, 45, 46] mitigate hotspots by adding extra complication, but
cannot achieve the ideal protocol mentioned above. In particular,
the ideal protocol needs to read dirty data written by another trans-
action that has not committed yet. For pessimistic concurrency
control, this violates the conventional definition of 2PL — T1 can
acquire new locks after releasing locks to other transactions. For
OCC and hybrid concurrency control protocols such as MOCC [42]
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and CormCC [38], a transaction makes its writes visible only after
the execution finishes, which is inherently incompatible with the
notion of accessing dirty writes early.

Transaction chopping [36, 44, 48] and its recent improvements
(e.g., IC3 [43] and Runtime Pipelining [45]) are a line of research
that tried to enable early reads of dirty data. Transaction chop-
ping performs program analysis to decompose a transaction into
sub-transactions and allows a sub-transaction to make local up-
dates visible immediately after it finishes. While these techniques
can substantially improve performance, they have several severe
limitations. First, these methods require the full knowledge of the
workload including the number of transaction templates and the
columns/tables each transaction will access. Any new ad-hoc trans-
action incurs an expensive re-analysis of the entire workload. Sec-
ond, chopping must follow specific criteria to avoid deadlocks and
ensure serializability, which limits the level of parallelism can be
potentially exploited (see Section 2.2 for details). Third, conser-
vative conflict detections based on the limited information before
execution can enforce unnecessary waiting. For example, in IC3,
two transactions accessing the same column of different tuples may
end up causing contention.

In this paper, we aim to explore the design space of allowing
dirty reads for general database transactions without the extra
assumptions made in transaction chopping. To this end, we pro-
pose Bamboo, a pessimistic concurrency control protocol allowing
transactions to read dirty data during the execution phase (thus
violating 2PL), while still providing serializability. Bamboo is based
on the Wound-Wait variant of 2PL and can be easily integrated into
existing locking schemes. It allows a transaction to retire its lock on
a tuple after its last update on the tuple so that other transactions
can access the data. Annotations of the last write can be provided by
programmers or programming analysis. To enforce serializability,
Bamboo tracks dependency of dirty reads through the lock table
and aborts transactions when the dependency is violated.

One well-known problem of violating 2PL is the introduction
of cascading aborts [3] — an aborted transaction causes all trans-
actions that have read its dirty data to also abort. If not properly
controlled, cascading aborts lead to a significant waste of resources
and performance degradation. Through Bamboo, this paper ex-
plores the design space and trade-off of cascading aborts, evaluates
its overhead, and proposes optimizations to mitigate these aborts.
In summary, this paper makes the following contributions.

• Wedeveloped Bamboo, a new concurrency control protocol that
violates 2PL to improve parallelism for transactional workloads
without requiring the knowledge of the workload ahead of time.
Bamboo is provably correct.

• We conducted a thorough analysis (both qualitatively and quan-
titatively) of the cascading abort effect, and proposed optimiza-
tions to mitigate such aborts.

• We evaluated Bamboo in the context of both interactive transac-
tions and stored procedures. In TPC-C, Bamboo demonstrated a
performance improvement up to 2× for stored procedures and
4× for interactive transactions compared to the best baseline
(i.e., Wait-Die and Silo respectively). Bamboo also outperforms
IC3 by 2× when the attributes of hotspot tuples in TPC-C are
truly shared by transactions.

2 BACKGROUND AND MOTIVATION
Section 2.1 describes two-phase locking, with a focus on theWound-
Wait variant that Bamboo is based on. Section 2.2 discusses how
transaction chopping mitigates the hotspot issue.

2.1 Two-Phase Locking (2PL)
Two-phase locking (2PL) is the most widely used class of concur-
rency control in database systems. In 2PL, reads and writes are
synchronized through explicit locks in shared (SH ) or exclusive
(EX ) mode. A transaction operates on a tuple only if it has become
an “owner” of the corresponding lock.

2PL forces two rules in acquiring locks: 1) conflicting locks are
not allowed at the same time for the same data; 2) a transaction
cannot acquire more locks once it releases any [4].

The second rule requires every transaction obtaining locks to fol-
low two phases: growing phase and shrinking phase. A transaction
can acquire locks in the growing phase but will enter the shrinking
phase if they ever releases a lock. In the shrinking phase, no more
locks should be acquired. This rule guarantees serializability of ex-
ecutions by ensuring no cycles of dependency among transactions.
(a more rigorous proof is included in the technical report [20]).

For a lock request that violates the first rule, 2PL may put the
requesting transaction on the waiting queue until the lock is avail-
able. Two major approaches exist to avoid deadlocks due to cycles
of waiting: deadlock detection and deadlock prevention. The former
explicitly maintains a central wait-for graph and checks for cy-
cles periodically. The graph becomes a scalability bottleneck with
highly parallel modern hardware [47]. Deadlock prevention tech-
nique instead allows waiting only when certain criteria are met.
Wound-Wait is a popular protocols under the category [5, 34].
Wound-Wait Variant of 2PL

InWound-Wait, each transaction is assigned a timestampwhen it
starts execution; transactions with smaller timestamps have higher
priority. When a conflict occurs, the requesting transaction T com-
pares its own timestamp with the timestamps of the current lock
owners — owners whose timestamps are bigger than T are aborted,
namely Wound. Then T either becomes the new owner (i.e., all cur-
rent owners are aborted) or waits for the lock (i.e., some owners
remain), namely Wait. The lock entry for each tuple maintains
owners and waiters as two lists of transactions that are owning or
waiting for the lock on the tuple (Figure 2). waiters can be sorted
based on the transactions’ timestamps to simplify the process of
moving transactions from waiters to owners.

Wound-Wait is deadlock-free because a transaction can only
wait for other transactions that have smaller timestamps. In the
wait-for graph, this means all the edges are from transactions with
larger timestamps to transactions with smaller timestamps, which
inherently prevents cycles. Besides deadlock-freedom, Wound-Wait
is also starvation-free as the oldest transaction has the highest
priority and will never abort due to a conflict. Wound-Wait is the
concurrency control protocol used in Google Spanner [8, 30].

2.2 Transaction Chopping
Similar to Bamboo, transaction chopping [36] aims to increase
concurrency when hotspots are present. In particular, it chops a
transaction into smaller sub-transactions and allow an update to



be visible after the sub-transaction finishes but before the entire
transaction commits. In particular, an SC-graph is created based on
static analysis of the workload, where each sub-transaction repre-
sents a node in the graph. Sub-transactions of the same transaction
are connected by sibling (S) edges. Sub-transactions of different
transactions are connected by conflict (C) edges if they have poten-
tial conflicts. Chopping requires no cycle in the graph and only the
first piece can roll-back or abort. It obtains the finest chopping that
can guarantee safeness based on static information.

IC3 [43] is the state-of-the-art concurrency control protocol in
this line of research. IC3 achieves fine-grained chopping through
column-level static analysis. Sub-transactions accessing different
columns of the same table will no longer introduce C-edges. As
IC3 allows cycles in the SC-graph, during runtime, it tracks depen-
dencies of transactions and enforces pieces involving C-edges to
execute in order to maintain serializability. Moreover, it proposes
optimistic execution to enforce waiting just on validation and com-
mit phases for non-conflicting transactions accessing same columns
of different tuples. Although inducing more aborts, the optimistic
approach still show advantages under high contention.

However, IC3 still has several limitations. First, it assumes col-
umn accesses of all transactions to be known before execution
to identify possible conflicts in advance. Second, chopping must
guarantee no crosses of C-edges to avoid potential deadlocks. For
example, if one transaction accesses table A before B while the other
accesses table B before A. The accesses of tables A and B must be
merged into one piece, limiting concurrency. Third, column-level
static analysis does not exploit the concurrency when transactions
accessing same columns of different tuples; it helps reduce more
contention only when transactions access different columns of the
same tuple. Section 5.6 shows more quantitative evaluations.

3 BAMBOO
The basic idea of Bamboo is simple — in certain controlled circum-
stances, we allow other transactions to violate an exclusive lock
held by a particular transaction. A transaction’s dirty updates can
be accessed after it has finished its updates on the tuple, following
the idea shown in Figure 1c.

3.1 Challenges of Violating 2PL
Although violating 2PL offers great performance potential, it also
brings two key challenges that we highlight below.
Challenge 1: Dependency Tracking

A conventional 2PL protocol uses locks to track dependencies
among transactions. 2PL protocols use various techniques (cf. Sec-
tion 2.1) to prevent/break a cycle in the dependency graph. We call
an edge in a conventional dependency graph a lock-induced edge.

In contrast, Bamboo allows a transaction to read dirty value
without waiting for locks. Such a read-after-write dependency can
be part of a cycle and yet is not captured by a conventional lock.
For example, T1 may read T2’s dirty write on record A and T2 may
read T1’s dirty write on record B. Such a cycle is not captured
by the “wait-for” relationship. We call such a dependency edge a
dirty-read-induced edge.

For Bamboo to work efficiently, we need a new deadlock avoid-
ance mechanism that can avoid cycles caused by both lock-induced

retired owners waiters

1 LockAcquire(): wound current owners 
and add T to owners/waiters3

LockRetire(): move T from owners to retired

LockRelease(): remove T
from retired

2

Figure 2: A lock entry in Bamboo — Transaction T moves be-
tween lists (i.e., owners, waiters, and retired) through function
calls. The retired list does not exist in baseline Wound-Wait.

and dirty-read-induced edges uniformly. Section 3.2 will describe
the detailed protocol we build that achieves this goal.
Challenge 2: Cascading Aborts

Allowing a transaction to read dirty data may lead to cascad-
ing aborts, as pointed out in multiple previous protocols [12, 28].
Specifically, if T2 reads T1’s update before T1 commits, a commit
dependency between the two transactions is established — T2 is
able to commit only if T1 has successfully committed. If T1 de-
cides to abort (e.g., due to conflicts or integrity violation) then all
the transactions that have commit dependencies on T1 must also
abort; this includes T2 and all the transactions that have read T2’s
dirty writes and so forth. This means potentially a long chain of
transactions with commit dependencies need to cascadingly abort,
causing waste of work and performance degradation. In Section 4,
we present a deeper analysis of cascading aborts.

3.2 Protocol Description
This section describes the basic Bamboo protocol in detail. In par-
ticular, we focus on addressing the first challenge in Section 3.1 (i.e.,
dependency tracking). Bamboo is developed based on Wound-Wait
(cf. Section 2.1); our description mainly focuses on the differences
between the two. We firstly describe the new data structures Bam-
boo requires to track dependencies of dirty reads, followed by a
detailed description of the pseudocode of the protocol.

3.2.1 Data Structures. All edges in the dependency graph of a con-
ventional 2PL protocol are lock-induced edges. They are captured
by locks and maintained in lock entries of individual tuples. For
Bamboo, we try to uniformly handle both lock-induced and dirty-
read-induced edges by adding extra metadata into each lock entry
and transaction.

tuple.retired: Bamboo adds a new list called retired in each
lock entry next to the existing lists of owners and waiters, as
shown in Figure 2. retired is sorted based on the timestamps of
transactions in it. After a transaction has finished updating a tuple,
the transaction can be moved from owners to retired. This allows
other transactions to join owners and read the dirty updates of
the retired transactions. By maintaining the retired list, a dirty-
read dependency can be captured in the lock entry — if a retired
transaction T has an exclusive lock, then all transactions in retired
after T and all transactions in owners depend on T. Adding retired
allows both lock-induced and dirty-read-induced dependencies to
be maintained in the lock entry.

Transaction.commit_semaphore:Bamboo uses a new variable
commit_semaphore to ensure that transactions with dirty-read de-
pendencies commit in order. A transaction T increments its own



Algorithm 1: A transaction’s lifecycle in Bamboo —
Differences between Bamboo and Wound-Wait are high-
lighted in gray.
# req_type is SH or EX

1 LockAcquire(txn, req_type1, tuple1)
...
# Lock can retire after the last write to the tuple

2 LockRetire(txn, tuple1)
3 LockAcquire(txn, req_type2, tuple2)
...
# Wait for transactions that txn depends on

4 while txn.commit_semaphore , 0 do
5 pause
6 if(!abort) writeLog() # Log to persistent storage device
7 LockRelease(txn, tuple1, is_abort)
8 LockRelease(txn, tuple2, is_abort)
9 txn.terminate(is_abort)

semaphore when it conflicts with any transaction in retired of
any tuple. The semaphore is decremented only when the dependent
transaction leaves retired so that T becomes one of the leading
non-conflicting transactions in retired. The semaphore is imple-
mented using a 64-bit integer for each transaction and increment-
ed/decremented through atomic operations. The number of accesses
to the semaphore is bounded by the number of tuple accesses of
a transaction. The overhead of the semaphore is within 0.2% of
the total execution time with 120 threads under a high-contention
workload. Details of how this variable is operated will be discussed
in the concrete protocol.

3.2.2 Locking Logic. Algorithm 1 shows the lifecycle of how the
database executes a transaction with Bamboo. It largely remains
the same as a conventional Wound-Wait 2PL protocol, with the
differences highlighted using gray background color. For the basic
protocol, we assume each transaction is assigned a timestamp when
it first started similar to Wound-Wait; we will later optimize the
timestamp assignment process in Section 3.5.

Different from conventional 2PL, Bamboo allows a transaction
to immediately retire a tuple that will not be written again by the
transaction (line 2); the transaction can still read the tuple since
Bamboo keeps a local copy of the tuple for each read request. The
transaction can acquire more locks on other tuples after retiring
some lock (line 3). After the execution finishes, a transaction must
wait for its commit_semaphore to become 0 before it can start com-
mitting. The transaction then moves forward to perform logging
(line 6) and release locks (lines 7–8). Finally, the transaction either
commits or aborts depending on the execution result. If an abort
occurs during the transaction execution, the transaction directly
jumps to line 7 to release locks.

Algorithm 2 shows the detailed implementation of the functions
in Bamboo, i.e., LockAcquire(), LockRetire(), LockRelease(), as well as
an auxiliary function PromoteWaiters() which is called by the other
three functions. Note that the first three functions are in critical
sections protected by latches, same as other 2PL protocols.

The baseline Wound-Wait is the algorithm in Algorithm 2 ignor-
ing the code in gray. Bamboo adds extra logic to LockAcquire() and
LockRelease(), and adds a new function LockRetire(). In the following,
we walk through these functions step-by-step.

Algorithm 2: Function calls in Bamboo — Difference
between Bamboo and Wound-Wait is highlighted in gray.
tuple.retired # List of retired transactions ordered by ascending
timestamp order

tuple.owners # List of owners of the lock
tuple.waiters # List of transactions waiting for the lock, sorted by
ascending timestamp order

# Each list above contains {txn, type} where type is either SH or EX

1 Function LockAcquire(txn, req_type, tuple)
2 has_conflicts = false
3 for (t, type) in concat(tuple.retired, tuple.owners) do
4 if conflict(req_type, type) then
5 has_conflicts = true

6 if has_conflicts and txn.ts < t.ts then
7 t.set_abort()

8 tuple.waiters.add(txn)
9 PromoteWaiters(tuple)

# move txn from tuple.owners to tuple.retired
10 Function LockRetire(txn, tuple)
11 tuple.owners.remove(txn)
12 tuple.retired.add(txn)
13 PromoteWaiters(tuple)

14 Function LockRelease(txn, tuple, is_abort)
15 all_owners = tuple.retired ∪ tuple.owners
16 if is_aborted and txn.getType(tuple) == EX then
17 abort all transactions in all_owners after txn

18 remove txn from tuple.retired or tuple.owners
19 if txn was the head of tuple.retired and

conflict(txn.getType(tuple), tuple.retired.head) then
# heads: leading non-conflicting transactions
# Notify transactions whose dependency is clear

20 for t in all_owners.heads do
21 t.commit_semaphore−−

22 PromoteWaiters(tuple)

23 Function PromoteWaiters(tuple)
24 for t in tuple.waiters do
25 if conflict(t.type, tuple.owners.type) then
26 break
27 tuple.waiters.remove(t)
28 tuple.owners.add(t)
29 if ∃(t’, type) ∈ tuple.retired s.t. conflict(type, t.type) then
30 t.commit_semaphore ++

LockAcquire()

As discussed in Section 2.1, in Wound-Wait when a conflict oc-
curs, the requesting transaction would abort (i.e., wound) current
owners that have a bigger timestamp than the requesting transac-
tion (lines 2–7). In Bamboo, we need only a small change which
is to wound transactions in both owners and retired (line 3). Af-
ter some or all of the current owners are aborted, some waiting
transaction(s) or the requesting transaction may become the new
owner. In the pseudo code, for brevity, we show this logic by al-
ways adding the requesting transaction to the waiter list (line 8)
and then try to promote transactions with small timestamps from
waiters to owners (by calling PromoteWaiters() in line 9). In our
actual implementation, unnecessary movement between waiters
and owners are avoided.



Inside PromoteWaiters(), the algorithm scans waiters in the
growing timestamp order (line 24). For each transaction that does
not conflict with the current owner(s) (line 25), it is moved from
waiters to owners (lines 27–28). Otherwise the loop breaks when
the first conflict is encountered (line 26). In Bamboo, we also need to
increment the commit_semaphore for each transaction that just be-
came an owner if it conflicts with any transaction in retired (lines
29–30). This allows the transaction to be notified when transactions
that it depends on have committed.

LockRetire()

This function simply moves the transaction from owners to
retired of the tuple (lines 11–12). It then calls PromoteWaiters()
to potentially add more transactions to owners (line 13). It is im-
portant to note that the LockRetire() function call is completely
optional. If the function is never called for all transactions, then
Bamboo degenerates to Wound-Wait. Bamboo also allows any par-
ticular transaction to choose whether to call LockRetire() on any
particular tuple. Such compatibility allows the system to choose
between Bamboo and Wound-Wait at a very fine granularity.

LockRelease()

In Wound-Wait, releasing a lock simply means removing the
transaction from owners of the tuple (line 18) and promoting cur-
rent waiters to become new owners (line 22). In Bamboo, the Lock-
Release() function does more work: (1) handling cascading aborts
and (2) notifying other transactions when their dependency is clear.

Specifically, we define a list all_owners to be the concatenation
of retired and owners (line 15). If the releasing transaction de-
cides to abort and its lock on the tuple has type EX, then all the
transactions in all_owners after the releasing transaction must
abort cascadingly. In Bamboo, these transactions will be notified
abort; the abort logic will be later performed by the corresponding
worker threads. Note that if the aborting transaction locks the tuple
with type SH, then cascading aborts are not triggered — an SH lock
has no effect on the following transactions.

The algorithm then removes the transaction from retired or
owners depending onwhere it resides (line 18). If the removed trans-
actionwas the old head of retired and has a lock type that conflicts
with the new head of retired (line 19), then the algorithm notifies
all the current leading non-conflicting transactions in retired (i.e.,
heads of retired) that their dependency on this tuple is clear, by
decrementing their corresponding commit_semaphore (lines 29–30).

3.3 Deciding Timing for Lock Retire
In principle, everywrite can be immediately followed by lock_retire()
without affecting correctness. If a transaction writes a tuple for a
second time after retiring the lock, it can still ensure serializability
by aborting all transactions that have seen its first write. It will not
affect performance if transactions update each tuple only once.

For better performance, a lock can be retired after the transac-
tion’s last write to the tuple if the tuple may be updated more than
once by the same transaction. To determine where the last write is,
Bamboo can rely on programmer annotation or program analysis
to find the last write and insert lock_retire() after it. In this section,
we discuss the latter approach.

Determining the last write to a tuple can be challenging since
the position may depend on the query parameters or tuples ac-
cessed earlier in the transaction. We illustrate the challenge using
a transaction snippet shown in Listing 1, where op1 and op2 (line
1 and 5) both work on some tuple from the same table table1. In
the example, ideally we want to add LockRetire() immediately
after op1, yet we cannot be sure whether the later operation op2
will execute and access the same tuple or not at the desired retire
point. To solve this challenge, Bamboo synthesizes a condition to
add to the transaction program that dynamically decides whether
to retire a lock. The process is described below.

Program analysis. Bamboo first performs standard control and
data flow analysis [33] to obtain all the control and dataflow de-
pendencies in the transaction program. It inlines all functions to
perform inter-procedural analysis, and constructs a single depen-
dency graph for each transaction.

Identify queries. Bamboo next identifies every tuple access by
recognizing the database query API calls. It analyzes the query (e.g.,
the SQL query string passed to the API call) as well as parameters
to understand the table involved and the variable that stores the key
of the tuple being accessed. We assume most queries access a single
tuple by primary key and Bamboo can check potential tuple-level
re-access using the key. For non-key-access queries we assume it
touches all tuples and detect table-level re-access.

Synthesizing retire condition. If an operation op works on a
table that is no longer accessed after op in the transaction, then the
lock in op can safely retire. Otherwise, Bamboo will synthesize a
condition to decide whether to retire the lock. This condition checks
any later access will be executed and touching the same tuple as op
as an example shown on line 3 in Listing 2. In the condition, the
lock in op1 can safely retire either when cond evaluates to false,
which means the later access op2 will not happen, or when cond
evaluates to true but the key of tup1 and tup2 are not equal, which
means op2 will happened but not touch the same tuple.

To generate such condition, the value of cond and the key of tup2
must be computed before the LockRetire() call. To do so, Bamboo
traces the data source along the data dependency path of cond and
the key, and then moves any computation on the path that happens
later than op1 to an early position, without changing the program
semantic. Internally, Bamboo tries to move the computation to
every position later than op1, and stops when it finds the earliest
one where all the data dependencies hold after the movement. Then
it adds the synthesized condition as well as the LockRetire() call
to a position after the computation. For instance, line 3 in Listing 1
originally computes the key of tup2 late in the transaction. Bamboo
moves the computation of tup2.key to line 2 in Listing 2, the
earliest position after op1 where no data dependency is violated.

1 LockAcquire(table1 , tup1 , EX); // op1

2 ... // other queries and computations

3 tup2.key = f(input);

4 if (cond)

5 LockAcquire(table1 , tup2 , EX); // op2

Listing 1: A transaction program snippet

1 LockAcquire(table1 , tup1 , EX); // op1

2 tup2.key = f(input);

3 if (!cond || (cond && tup1.key!=tup2.key)) // synthesized

4 LockRetire(table2 , tup2)

5 ... // other queries and computations



6 if (cond)

7 LockAcquire(table1 , tup2 , EX); // op2

Listing 2: An example of synthesized condition
from Listing 1

Handling loops. Bamboo performs loop fission to allow synthe-
sizing condition for lock retire in loops. Listing 3 shows an example.
Because the keys used in later accesses are computed in later loop
iterations, Bamboo breaks the loop into two parts, as shown in List-
ing 4, where the first loop computes all the keys and the second
loop executes the tuple accesses. Bamboo then adds a nested loop
to produce the retire condition, as shown from lin 6-9. This nested
loop checks the keys of the rest of the iterations and sets the vari-
able added by Bamboo, can_retire, if any later key is the same as
the key in the current iteration. Bamboo only handles for loops
where the number of iteration is fixed (i.e., not changed inside the
loop). For other types of loop, we do not retire locks inside the loop
for now and leave it as future work.

1 for(i=0; i<input1; i++) {

2 key[i] = f(input2[i]);

3 tup.key = key[i];

4 LockAquire(table , tup , EX);

5 }

Listing 3: A transaction snippet involving for loop

1 for(i=0; i<input1; i++)

2 key[i] = f(input2[i]);

3 for(i=0; i<input1; i++) {

4 tup.key = key[i];

5 LockAquire(table , tup , EX);

6 bool can_retire = true;

7 for(j=i+1; j<input1; j++)

8 can_retire &&= (key[j]!=tup.key);

9 if (can_retire) LockRetire(table , tup);

10 }

Listing 4: An example of synthesized condition
from Listing 3

3.4 Discussions
This section discusses a few other important aspects of Bamboo.
An important feature of Bamboo is the strong compatibility with
Wound-Wait, meaning an existing database can be extended to use
Bamboo without a major rewrite. Many important design aspects
can be directly inherited from 2PL.

Fault Tolerance: Bamboo does not require special treatment
of logging. As shown in Algorithm 1, a transaction does not log
its commit record until it has satisfied the concurrency control
protocol. This is similar to conventional 2PL.

PhantomProtection: Phantom protection [13] in Bamboo uses
the same mechanism as in other 2PL protocols, namely, next-key
locking [31] in indexes; this technique achieves the same effect as
predicate locking but is more widely used in practice. In this context,
lock retiring can also be applied to inserts or deletes to an index in
the same way as read/writes to tuples.

Weak Isolation: Bamboo can support isolation levels weaker
than serializability. For example, repeatable read is supported by
giving up phantom protection; read committed (RC) is supported by
releasing shared locks early. For RC, Bamboo needs to retire only
writes since read locks are always immediately released. Finally,
read uncommitted means each retire becomes a release.

Other Variants of 2PL: To ensure deadlock freedom, Bamboo
permits T2 to read T1’s dirty write only if such a dependency edge is
permitted in the underlying 2PL protocol. Bamboo can be extended
to any variants of 2PL but some variants fit better than others.
Wait-Die, for example, allows only older transactions to wait for
younger transactions. When applying retiring and dirty reads to
this setting, the older transactions are subject to cascading aborts,
meaning an unlucky old transaction may starve and never commit.
Such problems do not exist in Wound-Wait.

Compatibility with Underlying 2PL: As we pointed out in
Section 3.2, it is possible to smoothly transition between Bamboo
and the underlying 2PL protocol. Specifically, the LockRetire() func-
tion call is completely optional for any transaction on any tuple.
When it is not called, dirty reads are disabled for the particular lock
and the system behavior degenerates to 2PL. This allows a system
to dynamically turn on/off the dirty read optimization of Bamboo
based on the performance and frequency of cascading aborts.

Opacity: Opacity is a property that reads must be consistent
even before commit. By definition, ensuring opacity means a trans-
action is not allowed to read uncommitted data. If opacity is required
for a transaction, Bamboo can enforce it by running the transaction
inWound-Wait (i.e., wait on a tuple until the retired and owners lists
are empty). Note that some production systems [8, 9, 12, 28, 30] also
do not support further optimizations for transactions with opacity.

3.5 Optimizations
Here we introduce four optimizations for Bamboo— the first two
are to reduce extra overheads and the rest are to reduce aborts.
These ideas are not entirely new but we discuss them here since
they can substantially improve the performance of Bamboo. We
also apply them to baseline protocols when applicable.

Optimization 1: No extra latches for read operations. In
Bamboo, read operations retire automatically in LockAcquire().
We keep a local copy for every new read unless the data is written
by the transaction itself. A read operation can be moved to the
retired list directly whenever it can become the owner. This opti-
mization requires no extra latches for retiring and will not cause
more aborts since aborting a transaction holding a read lock does
not cause cascading aborts. Although copying may incur extra
overhead, existing work shows such overhead scales linearly with
the core count [45] and the introduced overhead is less than 0.1%
of the runtime with 120 cores under high contention. With the
optimization, the cost of accessing extra latches is within 0.8% of
the total execution time.

Optimization 2: No retire when there is no benefit. Write
operations do not need to retire if they bring little benefit but in-
crease the chances of cascading abort or the overhead of acquiring
latches; read operations can always safely retire since they cannot
cause cascading effects. Different heuristics can be used to decide
which writes may or may not be retired. We use a simple heuristic
where writes in the last δ (0 ≤ δ ≤ 1) fraction of accesses are
not retired. The intuition is that hotspots at the end of a trans-
action should not cause long blocking and retiring them has no
benefit. However, if a transaction turns out to spend significant
time (i.e., longer than δ of the total execution time) waiting on the



Algorithm 3: Support for dynamic timestamp assign-
ment — lines 1–5 are added to the beginning of function
LockAcquire() in Algorithm 2.
1 all_txns = concat(tuple.retired, tuple.owners, tuple.watiers)
2 if txn conflicts with any transaction in all_txns then
3 for t in all_txns do
4 set_ts_if_unassgined(t)

5 set_ts_if_unassigned(txn)

6 Function set_ts_if_unassigned(txn)
7 if txn.ts = UNASSIGNED then
8 atomic_compare_and_swap(&txn.ts, UNASSIGNED,

atomic_add(global_ts))

commit_semaphore, we will retire those write operations at the
end of a transaction.

Optimization 3: Eliminate aborts due to read-after-write
conflicts. In the basic Bamboo protocol, when a transaction tries
to acquire a shared lock, it needs to abort all the write operations of
low-priority transactions in both the retired list and the owner list.
We observed that such aborts are unnecessary. As Bamboo keeps
local copies for reads and writes, such a new read-operation can
read the local copy of other operations without triggering aborts.
The optimization naturally fits Bamboo as it allows for read-modify-
write over dirty data and multiple uncommitted updates can exist
on a tuple. However, the idea cannot be easily applied to existing
2PL. As reading uncommitted data is not allowed, there exists only
one copy of the data. Some existing works [28, 35] share a similar
idea that a transaction can choose which version to read as they
allow reading uncommitted data under certain scenarios. But they
typically support up to one uncommitted version.

Optimization 4: Assign timestamps to a transaction on its
first conflict. Here we explain how to extend Bamboo to support
dynamic timestamp assignment to avoid aborting on the first con-
flict. The pseudocode is shown in Algorithm 3. Specifically, lines
1–5 in Algorithm 3 are inserted to the beginning of function LockAc-
quire() in Algorithm 2. If the incoming transaction conflicts with any
other transaction in retired, owners, or waiters (line 1–2), we
assign timestamps for all transactions in the three lists, in the order
specified by the algorithm (lines 3–4), and then assign timestamp
for the incoming transaction (line 5). Timestamp assignment is a
single compare_and_swap() call (lines 6–8). Bamboo may be further
improved through more complex timestamping strategies [29].

4 CASCADING ABORTS
This section analyzes the effect of cascading aborts qualitatively
and discusses an optimization that we propose to mitigate the effect.

4.1 Cases Inducing Cascading Aborts
Cascading aborts (also called cascading rollback) is a situation where
the abort of a transaction causes other transactions to abort. In
Bamboo, transactions can read uncommitted data, if the transaction
that wrote the data aborts, all dependent transactions must also
abort cascadingly. In our algorithm, the procedure of cascading
aborts corresponds to the line 17 of Algorithm 2.

In Bamboo, a transactionT may abort in three cases: (1) whenT
is wounded by another transaction with higher priority to prevent
deadlocks, (2) when a transaction that T depends on aborts and T
aborts cascadingly, or (3) when T self-aborts due to transactional
logic or user intervention. As cases (1) and (3) can occur in the
baseline Wound-Wait protocol as well, we focus on discussing the
difference between case (2) and the other two cases.
4.2 Effects of Cascading Aborts as a Trade-off

of Reducing Blocking
The effect of cascading aborts can be evaluated through three met-
rics — length of abort chain, abort rate, and abort time. The length
of abort chain depicts the number of transactions that must abort
cascadingly due to one transaction’s abort; our empirical result
shows the number can be as large as the number of concurrent
transactions at high contention. The abort time describes the total
CPU time wasted on executing transactions that aborted in the
end. The throughput of a transaction processing system is largely
determined by the number of CPU cycles performing useful vs.
useless work; abort time is an example of such useless work. The
other example is the time spent on waiting for a lock, which we
defined asWait Time. Unlike the first two indicating the magnitude
of the effect, the time measurements illustrate the tradeoff between
waits and aborts in a more direct way. We use this metric to show
the trade-off in the evaluation section.

Compared to Wound-Wait, Bamboo substantially reduces the
wait time but increases abort time. Although Bamboo may have
more aborts than Wound-Wait due to cascading aborts, trading
waits for aborts may be a good deal in many cases.

There are two reasons why aborts may be preferred in certain
cases. First, with hotspots, all the transactions aborted cascadingly
are those that have speculatively read dirty data. These transactions
would have been waiting in Wound-Wait without making forward
progress in the first place. A large portion of cycles wasted on
cascading aborts in Bamboo would also be wasted on waiting in
Wound-Wait. Second, even if a transaction aborts, it warms up
the CPU cache with accessed tuples, so subsequent executions
become faster [27, 41]. We observe this effects on Silo, an OCC-
based protocol, as described in Section 5 — Silo has higher abort
rate than many 2PL protocols but also higher throughput.

We build a model based on previous theoretical analysis on
2PL [6, 18, 19] to illustrate when the benefits of Bamboo out-
weigh its overhead. We define K as the number of lock requests
per transaction, N as the number of transactions running concur-
rently, D as the number of data items, and t as the average time
spent between lock requests. The throughput is proportional to

N
(K+1)t × (1 −APconflict − BPabort), where Pconflict and Pabort denote
the probability a transaction encounters a conflict and an abort,
respectively;A denotes the fraction of execution time that a transac-
tion spends waiting given a conflict; B denotes the fraction of time
spent on aborted execution. Bamboo (bb) can reduce APconflict (due
to early retire) but increase BPabort (due to cascading aborts). It has
positive gains over Wound-Wait (ww) when the benefits outweigh
the overhead.

The gain in APconflict is (Abb − Aww)Pconflict, where Pconflict is a
property of the workload and is approximately NK2/(2D) [18, 19]
in both protocols;Abb is approximately 1/(K + 1) (i.e., wait for only



the duration of one access) and Aww is on average 1/2 (i.e., wait for
half of the transaction execution time).

To model BPabort, we observe that Bamboo and Wound-Wait
share two common sources of aborts, i.e. aborts due to deadlock and
user-initiated aborts. Bamboo introduces another source of aborts
due to cascading, represented as BPcas_abort, where Pcas_abort is the
probability that a transaction aborts cascadingly. We calculate an
upper bound of this cost. We can bound B by 1 and bound Pcas_abort
by (1 − Pdeadlock) × Pconflict × Pdeadlock × (N − 1) (i.e., the current
transaction experiences a conflict while some other transaction
experiences a deadlock), which is bounded by NPconflictPdeadlock.
The value of Pdeadlock is approximately NK4/4D2 [18, 19] given
uniform distribution.

Combining the above, Bamboo has performance advantage when
(Aww − Abb)Pconflict > BPcas_abort, which is satisfied when ( 12 −

1
K+1 )Pconflict > NPconflictPdeadlock, which is satisfied when N 2K 4

2D2 <
K−1
K+1 . For most databases, the data size D is orders of magnitude
larger than N and K ; so the equation will hold. The high-level
intuition here is that Pdeadlock is much lower than Pconflict [18, 19].
Bamboo optimizes for the common case by reducing the cost of a
conflict and sacrifices performance of the conner case by increasing
the cost of aborts during deadlocks.

In Section 5, we performed quantitative evaluations on the im-
pact of cascading aborts and the tradeoff between aborts and waits
using the metrics described above.Wewill show how the evaluation
results corroborate the arguments and modeling here.

5 EXPERIMENTAL EVALUATION
This section evaluates the performance of Bamboo. We first intro-
duce the experimental setup in Section 5.1, followed by demon-
strations of the performance of Bamboo without cascading aborts
in Section 5.2. In Section 5.3, we evaluate Bamboo under different
scenarios to understand the effect of cascading aborts. We then
report the performance of Bamboo on YCSB and TPC-C workloads
in Sections 5.4 and 5.5 respectively to evaluate Bamboo on different
distributions and workloads with user-initiated aborts. Section 5.6
compares Bamboo and IC3 with TPC-C at high contention.

5.1 Experimental Setup
We implement Bamboo in DBx1000 [1, 47], a multi-threaded, in-
memory DBMS prototype. It stores data in a row-oriented manner
with hash table indexes. The code is open sourced [2]. In this paper,
we extended DBx1000 to run transactions in both stored-procedure
and interactive modes. In the stored-procedure mode, all accesses
in a transaction and the execution logic are ready before execution.

The interactive mode involves two types of nodes: (1) the DB
server processes requests like get_row(), and update_row(), and
(2) the client server executes transaction logic and sends requests to
the DB server through gRPC. As Bamboo does not require knowing
the position of the last write for correctness (cf. Section 3.3), DB
server immediately retires the lock after completing each write re-
quest, essentially treating every write as the last write. Optimization
2 introduced in Section 3.5 does not apply in this mode.

DBx1000 includes a pluggable lock manager that supports dif-
ferent concurrency control schemes. This allows us to compare

Bamboo with various baselines within the same system. We im-
plemented 5 approaches described as follow:
• WOUND_WAIT [5]: The Wound-Wait variant of 2PL (Sec-
tion 2.1).

• NO_WAIT [5]: The No-Wait variant of 2PL where any conflict
causes the requesting transaction to abort.

• WAIT_DIE [5]: The Wait-Die variant of 2PL.
• SILO [41]: An in-memory database for fast and scalable trans-
action processing. It implements a variant of OCC.

• IC3 [43]: State-of-the-art transaction chopping-based concur-
rency control protocol as described in Section 2.2.

Experiments in stored-procedure mode were run on a machine with
four Intel Xeon CPU at 2.8GHz (15 cores) with 1056GB of DRAM,
running Ubuntu 16.04. Each core supports two hardware threads.
For the interactive mode, experiments were run on workstations
provided by cloudlab [11] with each machine containing two Intel
Xeon CPU at 2.6GHz (32 cores) with 376GB of DRAM, running
Ubuntu 16.04. Each core supports two hardware threads. We collect
transaction statistics, such as throughput, latency, and abort rates
by running each workload for at least 30 seconds.

In this paper, we assume that each hotspot contains one tuple and
treat a set of hot tuples as multiple hotspots. For the experiments,
transactions log to main memory — modern non-volatile memory
would offer similar performance. Bamboo applies all the optimiza-
tions introduced in Section 3.5. To decide the choice of δ , we ran
microbenchmark with a wide range of δ . In general, as δ increases,
the overhead in Bamboo decreases, which improves performance
in low-contention cases. However, a larger δ also increases the time
spent on waiting for locks under high contention, which leads to
less than 13% drop in performance in our experiments. To balance
the contrary effects under different workloads, we chose a δ of 0.15
across all workloads. As the dynamic timestamp assignment can
also be applied to other 2PL-based protocols, we turn on the opti-
mizations whenever they gain improvements from it. However, as
only Bamboo involves cascading aborts, the other protocols barely
benefit from the optimization.

5.2 Experimental Analysis on Bamboo without
Cascading Aborts (Single Hotspot)

In this section, we evaluate the potential benefits of Bamboo in the
ideal cases with only one hotspot and induce no cascading aborts.
Single Hotspot at Beginning

We firstly design a synthetic workload with 16 random reads but
a single read-modify-write hotspot at the beginning. In stored-
procedure mode, Bamboo shows 6× improvements against the
best-performing 2PL-based protocols (Wait-Die) due to savings
on waiting. In the interactive mode, Bamboo is up to 7× better than
the best baseline (Wound-Wait).
Varying Transaction Length

In Figure 3a, we vary the length of the transactions and report
the speedup of Bamboo (BB) over Wound-Wait (WW). Firstly, the
results shows that Bamboo has greater speedup for longer trans-
actions by up to 19×, which corresponds to a larger A increasing
the benefit in the modeling shown in Section 4.2. Secondly, the
speedup first increases as the number of threads increases, and then
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Figure 3: Performance on synthetic benchmark with one
hotspot at the beginning with various settings, stored-
procedure mode

saturates or drops when even more threads come in. This is due to
the limitation of the inherent level of parallelism in the workload.
Varying Hotspot Position

Instead of fixing the hotspot at the beginning, we vary the po-
sition of the hotspots in this experiment. The result is shown in
Figure 3b. The two small figures on each side of the x-axis corre-
sponding to the position of the hotspot when x = 0 (beginning of
transaction) and x = 1 (end of transaction), respectively. We show
the results for workloads with transactions of 16 operations, while
the results for other transaction lengths have similar observations.
Bamboo provides a higher speedup against Wound-Wait when the
access of hotspot is earlier in a transaction. The result also aligns
with the modeling as an early access gives larger Aww and thus
greater benefit from Aww −Abb .

Summary: Through reducing lock waiting time, Bamboo can
improve performance significantly (up to 19× over Wound-Wait).
Some factors have an impact on the performance gain — Bamboo
shows larger speedup under a higher level of parallelism (i.e., more
threads), longer transactions, and “earlier” hotspot accesses.

5.3 Experimental Analysis on Bamboo with
Cascading Aborts (Multiple Hotspots)

Next, we present empirical evaluation of Bamboo servingworkloads
that can induce cascading aborts to understand their effects. We
start with synthetic workloads with 2 read-modify-write hotspots
and 14 random reads. Here we use a dataset of more than 100 GB.

To study the tradeoff between waits and aborts, we precisely
control the workloads as two types: (1) we fix the first hotspot at
the beginning of each transaction while moving the second around.
In this case, the benefit Bamboo gained over Wound-Wait is fixed
and the chance of having cascading aborts increases as the distance
between the two hotspots increases. We use the case to study how
different magnitude of cascading aborts can affect the gains. (2) we
fix the second hotspot at the end of the transactions and move the
other around to study the case where the benefits and the chance
of cascading aborts increase simultaneously for Bamboo.
Fix One Hotspot at the Beginning

In this experiment, we also show BAMBOO-base without the
Optimization 2 introduced in Section 3.5. As shown in Figure 4a,
Bamboo outperformsWound-Wait for all distances. Figure 4b shows
howBamboo gains speedup by tradingmore aborts for less blocking.
The improvements of Bamboo can be up to 3×. When the distance
x = 0.75 (i.e., there are 10 operations between the two hotspots),
Bamboo outperforms Wound-Wait by 37%, although the abort rate
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Figure 4: One hotspot at the beginning for Bamboo (left) and
Wound-Wait (right), stored-procedure mode (32 threads)
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Figure 5: The second hotspot at the end for Bamboo
(left) and Wound-Wait (right), stored-procedure mode (32
threads)

of Bamboo is 72% higher. The result can be explained by the model,
which indicates an improvement of at least 21.7% in Bamboo follow-
ing (Aww −Abb )Pconflict−Bbb ∗Pcas_abort = 15/16∗1−Bbb ∗0.72 ≥

0.217. The two versions of Bamboo differ only when the second
hotspot is at the end of the transaction (x = 1.0). With the opti-
mization, the last hotspot will not be retired, which greatly reduces
the bookkeeping overhead. Figure 4b also illustrates that Bamboo
reduces blocking while not increasing aborts with the optimization.
Fix One Hotspot at the End

Wenow fix the second hotspot at the end and change the position
of the first hotspot. Compared to Figure 5a, this workload here has
less advantage for Bamboo to begin with and yet introduces more
cascading aborts as the benefit increases. Figure 5b shows that
the time spent on aborts in Bamboo never exceeds the time spent
on waiting in Wound-Wait. However, Bamboo without the second
optimization (i.e., BAMBOO-base) may suffer from the overhead
when it barely has benefits when x = 0, where the theoretical
improvement is only 1/16. We note that such cost is a function of
the workload and underlying system. It may be significant with
stored-procedure as shown here, which makes our optimization
necessary in mitigating the problem.With other system setups such
as the interactive mode shown in later experiments, the trade-off
can change greatly.

Summary: The potential benefit of Bamboo against Wound-
Wait is a tradeoff between the benefit of reducing lock waiting
time and the cost of cascading aborts and other overhead. Our
measurements show that the benefits of reducing lock waiting time
is usually greater than the cost of abort. However, Bamboo can
suffer from overhead with certain system setup when the benefit
is minimal. In this case, our optimization of conditionally retiring
some write operations should be applied for such cases.
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Figure 6: YCSB with varying thread count, stored-procedure
mode (θ = 0.9, read_ratio = 0.5)
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Figure 7: YCSB with 5% long read-only transactions access-
ing 1000 tuples, stored-proceduremode (θ = 0.9, read_ratio =
0.5)

5.4 Experiments on YCSB
We now move to an even more complex workload — YCSB with
zipfian distribution. We will show how Bamboo performs compared
to other baselines as the number of threads, data accessing distribu-
tion, and read ratio vary. Note that in general Bamboo only targets
the high-contention setup in this workload as it is where hotspots
(that most transactions would access) are present.

The Yahoo! Cloud Serving Benchmark (YCSB) [7] is a collection
of workloads that are representative of large-scale services created
by Internet-based companies. For all experiments in this section,
we use a large scale database of more than 100 GB, containing a
single table with 100 million records. Each YCSB tuple has a single
primary key column and then 10 additional columns each with 100
bytes of randomly generated string data. The DBMS creates a single
hash index for the primary key.

Each transaction in the YCSB workload by default accesses 16
records in the database. Each access can be either a read or an
update. We control the overall read/write ratio of a transaction by a
specified read_ratio. We also control the workload contention level
through θ , a parameter controlling the Zipfian data distribution. For
example, when θ = 0, all tuples have equal chances to be accessed.
When θ = 0.6 or θ = 0.8, 10% of the tuples in the database are
accessed by ∼40% and ∼60% of all transactions respectively.

Varying Number of Threads. Figure 6a demonstrates that
Bamboo’s improvement against Wound-Wait with different num-
ber of threads in highly contentious YCSB (θ = 0.9) configured in
stored-procedure mode. Figure 6b shows Bamboo’s benefits come
from reducing waiting time without introducing many aborts. With
64 threads, Bamboo achieves the maximum speedup againstWound-
Wait, which is up to 1.77×. All 2PL-based protocols show degrada-
tion after 32 threads and Bamboo underperforms SILO when the
thread count more than 96. This is mainly due to the intrinsic lock
thrashing problem in 2PL [40].
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Figure 8: YCSB with varying distribution — throughput
vs. Zipfian skew level for YCSB, stored-procedure mode,
(read_ratio = 0.5, 16 threads)

Long Read-Only Transaction. This experiment uses a work-
load with 5% long read-only transactions accessing 1000 tuples and
95% read-write transactions accessing 16 tuples. Figure 7a shows
that Bamboo outperforms all other protocols most of the time. Com-
pared with waiting-based protocols, Bamboo benefits much from
reducing waiting while rarely aborts. It shows an improvement of
up to 5× against Wound-Wait. Optimization 3 (Section 3.5) in Bam-
boo also contributes to the scenario as long read-only transactions
will not block writes nor cause cascading aborts. SILO experience
performance degradation in this case since long transactions may
starve and aborts dominate the runtime as shown in Figure 7b. Bam-
boo also outperforms No-Wait as Bamboo ensures the priorities of
transactions and commit 20% more long transactions than No-Wait
when the thread count is 120.

Varying Read Ratio. We examine how varying read_ratio
would influence the performance of different protocols in stored-
procedure mode. Bamboo shows improvements against all other
protocols regardless of the read ratio. The percentage of improve-
ment ranges from 27% to 71%

Varying Data Accessing Distribution. Figure 8 shows how
Bamboo performs in both stored-procedure mode and interac-
tive mode as θ of Zipfian distribution changes. As showed in Fig-
ure 8a, Bamboo outperforms all 2PL-based protocols under high
contention (e.g. θ > 0.7). Compared to Wound-Wait, Bamboo pro-
vides up to 72% improvements in throughput. For cases of lower
contention, Bamboo has ∼10% degradation in throughput compared
with Wound-Wait due to overhead. However, such degradation
diminishes in the interactive mode where the expensive network
communication dominates. In the interactive mode, Bamboo is com-
parable with Wound-Wait with ∼8% improvements when θ ≤ 0.8
and shows up to 2× speedup over Wound-Wait.

Similarly, SILO’s low-level performance optimizations (e.g., lock-
free data structures) and the cache warming-up effect due to many
aborts makes its performance significantly better than other 2PL-
based protocols in stored-procedure mode. However, the perfor-
mance advantage of Silo disappears in the interactive mode (not
shown in the figures) where aborts are significantly more expensive
due to expensive gRPC calls. Bamboo outperforms all other proto-
cols including SILO in interactive mode where the cache warming-
up effect has less impact.
5.5 Experiments on TPC-C Results
Finally, we compare Bamboowith other concurrency control schemes
on the TPC-C benchmark [39]. We only ran experiments with 50%
new-order transactions and 50% payment transactions. Note in the
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Figure 10: vary # of warehouses in TPC-C (32 threads)

benchmark, 1% of new order transaction are chosen at random to
simulate user-initiated aborts.

We first vary the number of threads. Figure 9 presents the be-
havior of Bamboo under high contention in both modes. Bam-
boo can obtain up to 2× improvements against Wound-Wait in
stored-procedure mode. Similar to previous observations, SILO out-
performs other 2PL protocols given its cache warming-up effect
in stored-procedure mode. In interactive mode, Bamboo’s perfor-
mance scales up till 32 threads and achieves up to 4× and 14×
improvements against Wound-Wait and SILO respectively.

Figure 10 presents how Bamboo performs with a different num-
ber of warehouses with 32 threads. In stored-procedure mode, Bam-
boo outperforms other 2PL-based protocols in high-contention
cases. The improvement depends on the number of warehouses.
For example, when the number of warehouses is one (which is sim-
ilar to the single hotspot cases), Bamboo outperforms Wound-Wait
by up to 2×. When the workload is less contentious (e.g. with more
warehouses), the difference between Bamboo and other protocols
is smaller. It is expected since Bamboo targets at high-contention
cases. Figure 10b shows that Bamboo has more improvements of
up to 4× over the best baseline when running in interactive mode.

5.6 Comparison with IC3
We choose to compare the performance of Bamboo and IC3 in a
separate section due the fact that IC3 requires the knowledge of the
entire workload — an assumption not made in the other protocols.
We implemented IC3with all its optimizations in DBx1000 and show
the results with the best setting. Note that we omit the optimizations
for commutative operations for a fair comparison to all algorithms.

Figure 11a shows the comparison between Bamboo and IC3
on the mix of payment and new-order transactions with a global
warehouse table. As payment and new-order accesses different
columns of warehouse table and district table (the most contentious
tables in TPC-C), IC3’s prior knowledge on all column accesses help
it get rid of much contention. Given this, IC3 outperforms Bamboo
though it enforces some waiting when two transactions access the
same column of different tuples.
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Figure 11: Bamboo vs. IC3 in TPC-C, stored-proceduremode
(1 warehouse)

However, for workloads where contentious transactions access
the same columns of hotspot tuples, IC3 cannot gain such benefits
and underperforms Bamboo due to its column-level static analysis.
To illustrate the effect, we simply modified new-order transactions
to read one more column (W_YTD) that will be updated by payment
transactions. It is conceivable for a real-world transaction to read
a hot field updated by other transactions. The result and runtime
analysis are shown in Figure 11c and Figure 11d. While the per-
formance of Bamboo is barely affected, the performance of IC3
drops significantly. As expected, IC3 spends more time on waiting
than Bamboo due to its column-level static analysis. Note that, the
increase in aborts is due to IC3’s optimistic execution. The version
without optimistic execution shows worse performance with more
waiting. It would serialize the execution of potentially but not ac-
tually conflicting sub-transactions instead of just serializing the
validation phases of these sub-transactions. Overall, Bamboo has
up 1.5× improvement against IC3 on the slightly modified TPC-C
workload that has “true” conflicts between payment and neworder
transactions on the warehouse table.

Summary. In stored-procedure mode, Bamboo is better than
IC3 when most transactions truly conflict on a global hotspot. The
column-level static analysis in IC3 reduces more contention when
transactions access different columns of the same tuple, however,
it makes IC3 non-applicable for interactive modes.
6 RELATEDWORK
6.1 Violating Two-Phase Locking
Previous work has explored mechanisms that violate 2PL to im-
prove transaction performance but targeted different aspects than
Bamboo. In distributed systems, Jones et al. [25] proposed a locking
scheme that allows dependent transactions to execute when one
transaction is waiting for its execution to finish in multiple parti-
tions. The technique avoids making transactions wait for earlier
transactions’ distributed coordination. Gupta et al. [21] proposed a
distributed commit protocol where transactions are permitted to
read the uncommitted writes of transactions in the prepare phase
of two-phase commit, but not during transaction execution.



Locking violation is also used to avoid holding locks while log-
ging. Early Lock Release (ELR) [26, 37] is based the observation
that a canonical transaction holds locks after the execution (i.e., has
pre-committed) while waiting for the log to be flushed. ELR allows
such pre-committed transactions to release their locks early so that
other transactions can proceed and uses tags to enforce the commit
order among dependent transactions. ELR has been applied in both
research protocols [24] and commercial systems [12].

Controlled lock violation (CLV) [17] achieved the same goal as
ELR. But instead of using tags to enforce the commit order, CLV
extends data structures in the lock table to track and enforce the
dependency order, therefore working for more general cases. The
dependency tracking mechanism of Bamboo is inspired by CLV.
In contrast to ELR and CLV, Bamboo explores violating 2PL to
avoid holding locks on hotspots during the execution phase before
a transaction pre-commits to exploit more parallelism.

Ordered shared locks [3] explores violating 2PL in the execution
phase but lacks specifications on key design components such as
how to track dependency and avoiding deadlocks effectively. It has
no qualitative or quantitative analysis on cascading aborts, a major
concern of the approach, on modern systems. In contrast, this paper
thoroughly analyzes the effect of cascading aborts and the inherent
tradeoff between waits and aborts both qualitatively and quanti-
tatively with proposed optimizations. We further discussed both
key designs and new techniques in details such as safe retire with
program analysis used in Bamboo. We also performed evaluations
on modern systems comparing with state-of-the-art baselines.

6.2 Reading Uncommitted Data
Previous work also proposed non-locking concurrency control pro-
tocols that can read uncommitted data. Faleiro et al. [15] proposed a
protocol for deterministic databases that enables early write visibil-
ity, meaning that a transaction’s writes are visible prior to the end
of the execution. This protocol leverages the determinism where
transaction execution is ordered prior to execution and the writes
can be immediately visible to later transactions if the writing trans-
action will certainly commit. In contrast, Bamboo does not rely on
the assumption of determinism.

Hekaton [9, 28] proposed two protocols — pessimistic version
and optimistic version — for main memory databases based on
multiversioning. The pessimistic protocol allows for eager updates.
Operations like appending updates to a read-locked data or read-
ing the last-committed version of a write-locked data will not be
blocked. If the owner of uncommitted dirty data is in preparing state,
dirty reads are allowed as well. However, as dirty data is not visible
if its owner is in active state, a write operation over write locked
data by an active transaction will still be blocked. Bamboo makes
uncommitted data visible to reduce blocking time for transactions
with write-after-write conflicts. Similarly to Hekaton, Bamboo also
tracks dependencies of transactions due to visible dirty data for
serializable correctness, but in a different way.

In addition to IC3, runtime pipelining [45] (RP) is another variant
of transaction chopping. It is based on table-level static analysis
combinedwith runtime enforcement. Specifically, they firstly derive
a total ranking of all the read-write tables. Then it orders the sub-
transactions based on the rank and enforces the execution to follow
the order. However, sub-transactions still cannot be arbitrarily small

to allow for more concurrency for two reasons. First, similar to IC3,
accesses must be merged into one piece if they cause crossing of
C-edges. Second, table-level analysis allows for less concurrency
than column-level analysis.

Deferred runtime pipelining [32] (DRP) extends runtime pipelin-
ing to support both transactions where the access sets are known
and unknown. Similar to Bamboo, DRP allows transactions to read
tame transactions’ uncommitted data whenever the updates are
done. However, DRP imposes stronger assumptions on the tame
transactions that all the accesses must be known before execution
to ensure serializability and being deadlock-free. DRP also intro-
duces deferred execution to know when the updates are done and
to reduce cascading aborts. However, the technique can be applied
only when later operations do not depend on the previous ones.

There are works redesigning the architecture to allow reading
uncommitted data for hardware transaction. For example, Jeffrey
et al. proposed Swarm [22, 23] which divides a sequential program
into many small ordered transactions and speculatively runs them
in parallel. Unlike Swarm, Bamboo is implemented in software and
can be easily integrated into existing 2PL-based database systems.

6.3 Transaction Scheduling
Quro [46] changes the order of operations within a transaction
to make hotspots appear as close to commit as possible to reduce
the duration of locking period. However, Qura is subject to data
dependency in the transaction thus often not able to flexibly move
hotspots arbitrarily. Bamboo does not require changing the order
of transaction operators, but changes the concurrency control to
handle hotspots, making it able to improve performance for a wider
range of transactions than aforementioned work.

Ding et al. [10] reorders the transactions within a batch to mini-
mize inter-transaction conflicts and improve OCC for highly con-
tentious cases. It models the problem of finding the best order while
preserving the correctness as a feedback vertex set problem over di-
rected graph. For each batch, they run a proposed greedy algorithm
to approximate the solution of the NP-hard problem. However,
empirical evaluation shows the reordering process can take up
to 17× of the transaction processing time. making the end-to-end
performance lower than Bamboo.

7 CONCLUSION
We proposed Bamboo, a concurrency control protocol that extends
traditional 2PL but allows the two-phase rule to be violated by
retiring locks early. Through extensive analysis and performance
evaluation, we demonstrated that Bamboo can lead to significant
performance improvement when the workload contain hotspots.
Evaluation on TPC-C shows a performance advantage of up to 3×.

ACKNOWLEDGMENTS
Support for this researchwas provided by the University ofWisconsin-
Madison, Office of the Vice Chancellor for Research and Graduate
Education with funding from theWisconsin Alumni Research Foun-
dation. We also thank Phil Bernstein for his sapient feedback.



REFERENCES
[1] [n.d.]. DBx1000. https://github.com/yxymit/DBx1000.
[2] [n.d.]. DBx1000 with Bamboo Implemented. https://github.com/ScarletGuo/

Bamboo-Public.
[3] Divyakant Agrawal, Amr El Abbadi, Richard Jeffers, and Lijing Lin. 1995. Ordered

shared locks for real-time databases. The VLDB Journal 4, 1 (1995), 87–126.
[4] Philip A Bernstein, Philip A Bernstein, and Nathan Goodman. 1981. Concurrency

control in distributed database systems. ACM Computing Surveys (CSUR) 13, 2
(1981), 185–221.

[5] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-
tributed Database Systems. CSUR (1981), 185–221.

[6] Philip A Bernstein and Eric Newcomer. 2009. Principles of transaction processing.
Morgan Kaufmann.

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In SoCC. 143–154.

[8] James C. Corbett and et al. 2012. Spanner: Google’s Globally-Distributed Database.
In OSDI. 251–264.

[9] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL Server’s
Memory-Optimized OLTP Engine. In SIGMOD. 1243–1254.

[10] Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving optimistic concur-
rency control through transaction batching and operation reordering. Proceedings
of the VLDB Endowment 12, 2 (2018), 169–182.

[11] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-
sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). 1–14. https://www.flux.utah.edu/paper/duplyakin-atc19

[12] Tamer Eldeeb and Phil Bernstein. 2016. Transactions for Distributed Actors in the
Cloud. Technical Report.

[13] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The Notions of
Consistency and Predicate Locks in a Database System. CACM (1976), 624–633.

[14] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Multiversion
Concurrency Control. PVLDB (2015), 1190–1201.

[15] Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. 2017. High performance
transactions via early write visibility. Proceedings of the VLDB Endowment 10, 5
(2017), 613–624.

[16] Dieter Gawlick and David Kinkade. 1985. Varieties of concurrency control in
IMS/VS fast path. IEEE Database Eng. Bull. 8, 2 (1985), 3–10.

[17] Goetz Graefe, Mark Lillibridge, Harumi Kuno, Joseph Tucek, and Alistair Veitch.
2013. Controlled lock violation. In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data. ACM, 85–96.

[18] J. Gray, Pete Homan, H. Korth, and R. Obermarck. 1981. A Straw Man Analysis
of the Probability of Waiting and Deadlock in a Database System. In Berkeley
Workshop.

[19] Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts and Tech-
niques (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[20] Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. 2021. Releasing Locks As
Early As You Can: Reducing Contention of Hotspots by Violating Two-Phase
Locking (Extended Version). arXiv:2103.09906 [cs.DB]

[21] Ramesh Gupta, Jayant Haritsa, and Krithi Ramamritham. 1997. Revisiting Commit
Processing in Distributed Database Systems. In SIGMOD. 486–497.

[22] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.
2015. A Scalable Architecture for Ordered Parallelism. In MICRO. 228–241.

[23] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez. 2016. Unlocking
Ordered Parallelism with the Swarm Architecture. IEEE Micro (2016), 105–117.

[24] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anas-
tasia Ailamaki. 2010. Aether: a scalable approach to logging. Proceedings of the
VLDB Endowment 3, 1-2 (2010), 681–692.

[25] Evan P.C. Jones, Daniel J. Abadi, and Samuel Madden. 2010. Low Overhead Con-
currency Control for Partitioned Main Memory Databases. In SIGMOD. 603–614.

[26] Hideaki Kimura, Goetz Graefe, and Harumi A Kuno. 2012. Efficient locking
techniques for databases on modern hardware.. In ADMS@ VLDB. 1–12.

[27] Hsiang-Tsung Kung and John T Robinson. 1981. On optimistic methods for
concurrency control. ACM Transactions on Database Systems (TODS) 6, 2 (1981),
213–226.

[28] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-
nisms for Main-Memory Databases. VLDB (2011), 298–309.

[29] David Lomet, Alan Fekete, Rui Wang, and Peter Ward. 2012. Multi-Version
Concurrency via Timestamp Range Conflict Management. In ICDE. 714–725.

[30] Dahlia Malkhi and Jean-Philippe Martin. 2013. Spanner’s concurrency control.
ACM SIGACT News 44, 3 (2013), 73–77.

[31] C Mohan. 1990. ARIES/KVL: A Key-Value Locking Method for Concurrency Control
of Multiaction Transactions Operating on B-Tree Indexes. VLDB.

[32] Shuai Mu, Sebastian Angel, and Dennis Shasha. 2019. Deferred runtime pipelining
for contentious multicore software transactions. In Proceedings of the Fourteenth
EuroSys Conference 2019. 1–16.

[33] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 2010. Principles of
Program Analysis. Springer Publishing Company, Incorporated.

[34] Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis. 1978. System Level
Concurrency Control for Distributed Database Systems. ACM Transactions on
Database Systems (TODS) 3, 2 (1978), 178–198.

[35] Mohammad Sadoghi, Mustafa Canim, Bishwaranjan Bhattacharjee, Fabian Nagel,
and Kenneth A. Ross. 2014. Reducing Database Locking Contention through
Multi-Version Concurrency. Proc. VLDB Endow. 7, 13 (Aug. 2014), 1331–1342.
https://doi.org/10.14778/2733004.2733006

[36] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. 1995. Trans-
action Chopping: Algorithms and Performance Studies. ACM Transactions on
Database Systems (TODS) 20, 3 (1995), 325–363.

[37] Eljas Soisalon-Soininen and Tatu Ylönen. 1995. Partial strictness in two-phase
locking. In International Conference on Database Theory. Springer, 139–147.

[38] Dixin Tang and Aaron J Elmore. 2018. Toward coordination-free and reconfig-
urable mixed concurrency control. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18). 809–822.

[39] The Transaction Processing Council. 2007. TPC-C Benchmark (Revision 5.9.0).
[40] Alexander Thomasian. 1993. Two-phase locking performance and its thrashing

behavior. ACM Transactions on Database Systems (TODS) 18, 4 (1993), 579–625.
[41] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

2013. Speedy Transactions in Multicore In-Memory Databases. In SOSP.
[42] Tianzheng Wang and Hideaki Kimura. 2016. Mostly-optimistic concurrency

control for highly contended dynamic workloads on a thousand cores. Proceedings
of the VLDB Endowment 10, 2 (2016), 49–60.

[43] Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, and Jinyang Li. 2016.
Scaling multicore databases via constrained parallel execution. In Proceedings of
the 2016 International Conference on Management of Data. 1643–1658.

[44] Gerhard Weikum and Gottfried Vossen. 2001. Transactional information systems:
theory, algorithms, and the practice of concurrency control and recovery. Elsevier.

[45] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kapritsos, and Yang
Wang. 2015. High-performance ACID via modular concurrency control. In
Proceedings of the 25th Symposium on Operating Systems Principles. 279–294.

[46] Cong Yan and Alvin Cheung. 2016. Leveraging Lock Contention to Improve
OLTP Application Performance. Proceedings of the VLDB Endowment 9, 5 (2016),
444–455.

[47] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. VLDB, 209–220.

[48] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguilera, and
Jinyang Li. 2013. Transaction chains: achieving serializability with low latency
in geo-distributed storage systems. In SOSP. 276–291.

https://github.com/yxymit/DBx1000
https://github.com/ScarletGuo/Bamboo-Public
https://github.com/ScarletGuo/Bamboo-Public
https://www.flux.utah.edu/paper/duplyakin-atc19
https://arxiv.org/abs/2103.09906
https://doi.org/10.14778/2733004.2733006

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Two-Phase Locking (2PL)
	2.2 Transaction Chopping

	3 Bamboo
	3.1 Challenges of Violating 2PL
	3.2 Protocol Description
	3.3 Deciding Timing for Lock Retire
	3.4 Discussions
	3.5 Optimizations

	4 Cascading Aborts
	4.1 Cases Inducing Cascading Aborts
	4.2 Effects of Cascading Aborts as a Trade-off of Reducing Blocking

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Analysis on Bamboo without Cascading Aborts (Single Hotspot)
	5.3 Experimental Analysis on Bamboo with Cascading Aborts (Multiple Hotspots)
	5.4 Experiments on YCSB
	5.5 Experiments on TPC-C Results
	5.6 Comparison with IC3

	6 Related Work
	6.1 Violating Two-Phase Locking
	6.2 Reading Uncommitted Data
	6.3 Transaction Scheduling

	7 Conclusion
	Acknowledgments
	References

