How to Design Disaggregation in Large-Scale Transaction
Systems

Zhihan Guo
University of Wisconsin-Madison

Nowadays, organizations have increasing desire for a trans-
action system that provides flexible, scalable, and highly
available services across geo-distributed data centers with
ACID guarantees. Many databases are built on this purpose
including but not limited to Amazon Aurora [5], Azure SQL
DB Hyperscale (Socrates) [1], CockroachDB [4], Founda-
tionDB [6], Google Spanner [3], PolarDB [2]. These database
systems feature a disaggregated architecture that decouple
different components as multiple distinct subsystems. Most
of them decouple the storage from the computation as a
standalone service, as an example. This allows each part
to scale and bill independently while improving resource
utilization, reducing operational cost, and enabling flexible
cloud deployment with heterogeneous configurations. How-
ever, the designs vary greatly across different systems —
each system has a distinct architecture and a specific set of
techniques. Our goal here is to understand the design space.

Disaggregation Design Space. The first question is
what can be disaggregated and what is the spectrum of the
possible physical arrangements. For example, on one hand,
CockroachDB has two main physical clusters of machines —
one for computation-related tasks such as SQL parsing and
execution while the other cluster takes charge of the stor-
age and handles read/write requests. Storage nodes handle
both conflict detection and fault tolerance. On the other
hand, FoundationDB breaks down the system into more
standalone subsystems connecting through the network such
as metadata management (the proxies), concurrency con-
trol, timestamp generation, logging (the durable queuing
system), and table storage.

What to disaggregate. The next question is whether to
disaggregate a component. There are many factors leading
people to choose disaggregation such as different scalabil-
ity requirements, privacy and isolation concerns, heteroge-
nous hardwares, deployment of existing cloud services, etc.
For instance, Google Spanner uses Colossus to exploit the
existing durability and scalability provided by an existing
distributed file system. Although there are many reasons
for disaggregation, the cost in performance and resources
is also worth considering. As an example, people may de-
couple the metadata storage from the main data storage for
considerations such as privacy and isolation. However, this
separation need to deploy two subsystems to provide simi-
lar consistency and availability guarantees. As a result, it
may not only take more resources and development efforts,
but also increase the latency — in a case that a data access
request queries both subsystems for the metadata such as
locks and partition information and the table data.

Disaggregation Challenge 1: Correctness. More-
over, there are new issues we need to take care of due to
disaggregation. One common problem is how to read the
latest data in a multi-versioned database. Traditionally,
fetching data and updating data go to the same machine.
In a disaggregated setup, nevertheless, a client may read
data from a place that is different from where the data was
updated at the commit time. For one instance, Founda-
tionDB commits a transaction when the write-ahead-logs

are durable and replicated. A separate table storage will
asynchoronously pull the log and apply the changes to the
tables. In this case, there could be a lag so that the latest
version is not yet available in the table storage. The table
storage should be able to identify the case when a request
arrives. Otherwise, it will provide the latest available ver-
sion that is actually staled. There are other examples of
data read from a copy that is not syncrhonously updated
during commit such as reading from a client-side cache, a
node serving read-only requests, a storage asyncrhonously
materializing logs. Some systems [3, 4] avoid the issue by
unifying the read/write destination while some [5, 6, 2] uses
a watermark to track. Although it may firstly seem to be a
tiny element that every system develops their owns as part
of their integrated design, we can actually compare across
the alternative plans across systems to evaluate the involved
trade-offs.

Disaggregation Challenge 2: Performance. In ad-
dition to solve new problems, we also need to re-evaluate
some existing solutions as the trade-off may change in the
new architecture making them sub-optimal. One example
is where to keep the groundtruth of metadata such as key-
partition mapping. When the storage and compute is not
separated, the metadata can be partitioned and kept along
with the storage. As storage becomes disaggregated, keep-
ing the mapping in storage will incur more network messages
to route the request, while keeping the mapping in the com-
pute may require extra support for strong consistency and
high availability. To this end, existing systems usually takes
the former approach and allow caches in the compute side,
however, cache invalidation becomes a new problem espe-
cially during ongoing changes of metadata. Similarly, where
to evaluate transaction conflicts also involves new trade-offs
between extra network messages and complicating storage
systems.

In summary, this project aims to explore the design space
of disaggregation in modern large-scale transaction systems
by considering the four proposed aspects and we hope to
provide some useful insights when developing such a disag-
gregated architecture.

1. REFERENCES

[1] P. Antonopoulos, A. Budovski, C. Diaconu,
A. Hernandez Saenz, J. Hu, H. Kodavalla,
D. Kossmann, S. Lingam, U. F. Minhas, N. Prakash,
et al. Socrates: The new sql server in the cloud. In
Proceedings of the 2019 International Conference on
Management of Data, pages 1743-1756, 2019.

[2] W. Cao, Y. Zhang, X. Yang, F. Li, S. Wang, Q. Hu,
X. Cheng, Z. Chen, Z. Liu, J. Fang, B. Wang, Y. Wang,
H. Sun, Z. Yang, Z. Cheng, S. Chen, J. Wu, W. Hu,
J. Zhao, Y. Gao, S. Cai, Y. Zhang, and J. Tong.
PolarDB Serverless: A Cloud Native Database for
Disaggregated Data Centers, page 24772489.
Association for Computing Machinery, New York, NY,
USA, 2021.



[3] D. Malkhi and J.-P. Martin. Spanner’s concurrency
control. ACM SIGACT News, 44(3):73-77, 2013.

[4] R. Taft, I. Sharif, A. Matei, N. VanBenschoten,

J. Lewis, T. Grieger, K. Niemi, A. Woods, A. Birzin,

R. Poss, P. Bardea, A. Ranade, B. Darnell, B. Gruneir,

J. Jaffray, L. Zhang, and P. Mattis. Cockroachdb: The

resilient geo-distributed sql database. In Proceedings of

the 2020 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’20, page 14931509,

New York, NY, USA, 2020. Association for Computing

Machinery.

A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam,

K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,

T. Kharatishvili, and X. Bao. Amazon aurora: Design

considerations for high throughput cloud-native

relational databases. In Proceedings of the 2017 ACM

International Conference on Management of Data,

pages 1041-1052, 2017.

J. Zhou, M. Xu, A. Shraer, B. Namasivayam, A. Miller,

E. Tschannen, S. Atherton, A. J. Beamon, R. Sears,

J. Leach, et al. Foundationdb: A distributed unbundled

transactional key value store. In Proceedings of the

2021 International Conference on Management of

Data, pages 26532666, 2021.

[5

6



