Designing Atomic Commit for Cloud DBMSs with Storage
Disaggregation

Zhihan Guo
University of Wisconsin-Madison

Databases are migrating to the cloud because of desirable
features such as elasticity, high availability, and cost compet-
itiveness. Modern cloud-native databases feature a storage-
disaggregation architecture where the storage is decoupled
from computation as a standalone service. This architecture
allows independent scaling and billing of computation and
storage, which can improve resource utilization, reduce op-
erational costs, and enable flexible cloud deployment with
heterogeneous configurations. Many cloud-native database
systems adopt such an architecture for both OLTP [18, 20,
15, 5] and OLAP [3, 2, 4, 17, 7, 10]. Nowadays, as storage
services offer essential functions such as fault tolerance, scal-
ability, and security at low cost, systems start to layer their
designs on the existing disaggregated storage services [6, 8].

This work focuses on optimizing Two-Phase Commit (2PC),

a widely-used atomic commit protocol, on existing storage
services without requiring customized APIs. Therefore, a
database can adopt existing highly optimized storage ser-
vices and thereby avoid the expense of developing a new
one, and can also allow the storage to adopt new mecha-
nisms (e.g., new replication protocols) independently. Here
we will discuss two parts: (1) how to optimize 2PC leverag-
ing that the disaggregated storage service is highly-available
and shared among compute nodes; (2) what is the minimal
requirement from existing storage services to implement the
optimized protocol.

We introduce Cornus, an optimized 2PC protocol specifi-
cally designed for the storage disaggregation architecture in
cloud-native databases. Cornus makes two major changes
to conventional 2PC. First, it eliminates decision log-
ging by the coordinator, which significantly reduces the
latency of 2PC. A transaction is committed as soon as all
participants have written VOTE-YES in their log in response
to prepare requests in phase one. This optimization is fea-
sible because highly-available disaggregated storage ensures
that after the log is written, it will not be lost. Second, Cor-
nus denotes a LogOnce() API based on compare-and-swap
functionality to address the blocking problem. The API
allows multiple participants to read and update the same log
file and ensures that only the first log append for a transac-
tion can update this transaction’s state. This feature allows
any participant that is uncertain about the transaction’s
outcome to force an abort by writing a vote to an unrespon-
sive participant’s log.

To deploy Cornus on existing storage systems, Cornus re-
quires an atomic operation so that we can leverage it to
implement LogOnce() semantic in the compute layer. The

atomic operation can be either a conditional write (write
only if a condition holds) or an atomic append (two con-
current writes must have happen-before order). We demon-
strate the specific setup and possible implementations on

Microsoft Azure Storage E)] using Etag (gl] Azure Storage
assigns an identifier to each object. The identifier is updated

every time the object is updated and an HTTP GET request
returns the identifier as part of the response using the Etag
(entity tag) header defined within HT'TP. A user updating
an object can send in the original Etag with an “If-Match”
conditional header so that the update will be performed only
if the stored ETag matches the one passed in the request [1].
Thus, we can have each partition/participant maintaining a
corresponding log file as an object in the storage. Each par-
ticipant keeps track of the Etag in the compute layer and
uses the conditional header to ensure LogOnce() semantic.

While Cornus directly runs on top of a highly-available
storage service through a consensus-agnostic interface, many
prior works [11, 14, 16, 19] manage the replication on their
own and co-design 2PC with replication protocols for further
optimizations. Although these protocols cannot be directly
applied to existing storage services, we still evaluate them
to show the potential optimization space when having dif-
ferent assumptions. We performed both theoretical and em-
pirical evaluations on 2PC, Cornus, Paxos Commit [11] and
MDCC [14]. For 2PC and Cornus, we assume the underlying
storage runs a Multi-Paxos instance for each entity (coordi-
nator/participant) since the others are based on Paxos and
its variations. To briefly summarize, Cornus can save up
to 2.5 RTT than 2PC without exposing replication details
to compute nodes in this context. More complex protocols
like MDCC and Paxos Commit that combine atomic com-
mit with replication can achieve 1 RTT less than Cornus in
latency, but loses flexibility since the storage layer and com-
pute layer need to be co-designed. Moreover, these Paxos-
based co-design protocols only depict the ideal latency when
all network communications take an equal amount of time.
It is not clear how much these protocols can gain in the cloud
where network latency fluctuates and servers have jitter [13].

As a note, Cornus [12] is published and will be presented
in VLDB 2023. In addition to the materials presented in the
paper, we would like to share more details on the underlying
storage services. We could elaborate on how to implement
LogOnce() on existing storage services with atomic append
APIs (while the paper focuses on storage with conditional
write APIs), how it enables group commits, and how Cornus
interacts with different consistency models and replication
schemes in the storage.
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